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In an earlier paper [l], a model was formulated for computing the

optimal stock quantity of an item to be held by a retailer when resupply

from a wholesaler is possible but uncertain. The distinguishing feature

of the model is that it takes into account the cost of resupply and the

probability of stock being received by the retailer in time for issue to

customers. The model generalized an earlier inventory model [2] in which

no resupply is possible, which in turn was a more general formalization

of the classic newsboy problem (see pp. 31-32 [3]). Since the model

includes as parameters the cost of transportation and the probatility of

receiving material on time, it can be utilized to infer which of several

modes of transport is preferred for a given item.

The model described above assumed an infinite amount of stock is

available for shipment to the retailer and that the wholesaler incurs

no cost for holding stock. Furthermore, it assumed that the wholesaler

knows if a shipment to a retailer will arrive on time for sale to a
1

customer, and if the shipment would arrive late it is not sent at all.

Conversely, shipments are always made when it known they will arrive on time,

lThe particular context for the model is a retailer who sells customized
units which are desired during a short, specific period of time and if

delivery cannot be made on time the customer obtains the units elsewhere.
Hence a late shipment has the same outcome as no shipment, namely, a lost
sale.




In the two models to be discussed in this paper, the assumption of
infinite stock and no holding cost at the wholesale level is relaxed.
Instead it is assumed that W units of stock are available in the inven-
tory system, of which T wunits are stocked at the retail level and the
remaining (W-T) units are kept at a positive holding cost at the wholesale
level. As in the earlier paper, we first develop a model in which it is
assumed that the wholesaler ships requested units when it is known that
the shipment will arrive on time. Under this assumption it is found that
our earlier result (where an infinite amount of stock is kept at zero
holding cost by the wholesaler) is a limiting case of the one considered
here. We then develop a second model where it is assumed that the whole-
saler always ships requested units, but only 7 percent of the shipments

to the retailer will arrive on time.

As might be expected, in most instances the decision rule to ship
requested material only if it is known that the retailer will receive it
on time results in the same or lower total expected loss than the one where
material in short supply is always shipped. Even so, since the marginal
cost of determining if units will arrive on time is positive, the decision
rule of the second model, i.e., to always ship, may be the preferred one.
While the marginal cost of obtaining information is not considered in our
models, were such information available it could provide a means for
deciding which items are best resupplied using a push system of resupply
and which items one may want to exercise more stringent transportation
control so as to reduce the overall cost of operating an inventcry system.
As will be seen below, it appears that for most items the push system is

more economical for a wide range of parameter values.,

1. The Inventory System

Consider an inventory system consisting of a wholesaler and retailer
and that for each item there are W units of stock (varying with each
different item) of which T are placed with the retailer; the remaining
(W-T) units are kept by the wholesaler. Our problem is to finc the

optimal value of T given W .
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In this inventory system, customers are assumed to demand various

quantities x from the retailer, these quantities forming the probability

distribution P(x) where x§0 P(x) = 1. If x< T, the demanded units

are met from shelf stocks. If x exceeds T , an order for the needed

units is sent to the wholesaler.

We begin by specifying a mode of transportation for shipping units
between the wholesaler and retailer, the cost of shipping units by that
mode of transport, and the relative frequency with which shipments made to

the retailer arrive on time. The stockout cost to the retailer for units

not delivered on time and the holding costs to the retailer and wholesaler fJ
are also specified.

In particular, let

c

the unit cost of shipping additional units to the retailer
by the selected mode of transportation,

M = the relative frequency with which shipments made to the

retailer by the given mode of transportation arrive on

time,

Dr = the retailer's loss per unit of stock in short supply,

Hr = the retailer's cost of maintaining a unit of unused stock, §
and

Hw = the wholesaler's cost of maintaining a unit of unused stock.

We assume Hw < ﬂr so that we can write

H =aH where 0< o0 < 1.
W r -

In calculating the optimal retail stock level T for an item,
we consider two cases. First, the wholesaler ships the units in short
supply only if it i1s known that the shipment will arrive on time, i.e.,
shipments are made only [ percent of the time. Second, the wholesaler
always ships the units in short supply, but shipments arrive on time

only I percent of the time. These two cases are discussed below.

-3 -
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2. Model 1: Resupply Only When Units Will Arrive on Time

For the case where T units are stocked by the retailer and (W-T)
units by the wholesaler, and resupply is made only when it is known that

the units will arrive on time at the retailer, the total expected loss is

T T
L(T/W) = Hr L (T-x) P(x) + oH_ (W-T) I P(x)
x=0 r x=0
W W
+ I (CZ (x-T) P(x) + aH z (W=x) P(x))
x=T+1 r x=T+1
W W
+ (1-II) (D z (x-T) P(x) + aH (W-T) £ P(x))
r x=T+1 ¥ x=T+1
+ D I (x-W) P(x) . (1
x=W+1

The first and second terms in (1) are the retailer's and wholesaler's
expected loss, respectively, from holding too many units of stock when the
demand quantity is less than or equal to T . The third term is the expected
cost of transporting additionally required units which are sent the II
percent of the time it is known units will be received on time ty the
retailer. The fifth term is the expected loss when units ordered by the
retailer are not sent the (1-]I) percent of the time they would arrive
late (and as a result they are ordered elsewhere by customers). The fourth
and sixth terms are the wholesaler's expected loss from holding too many
units of stock when the demand quantity is greater than T units but less
than or egqual to ¥ wunits. In the II percent of the time that the whole-
saler does ship additional units, he is left with the remaining W-x wunits.
In the (1-]I) percent of the time that he does not ship, he is left with
all (W-T-1) units., The last term in (1) in the expected loss to the retailer

when the demand quantity is in excess of W wunits and, therefore, this

excess cannot be resupplied.
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If (T+l) units are stocked by the retailer and (W-T-1) units

by the wholesaler, the total expected loss is

T+1 T+1
L(T+1/W) = Hr L (T+Hl1-x)P(x) + aH_(W-T-1) I P(x)
x=0 t x=0
W . W
+ II(C % (x-T-1) P(x) + oH ¥ (W=x)P(x))
x=T+2 T x=T+2
%) 1Y
+ (1-II) (D Z (x-T-1)P(x) + aH_(W-T-1) I P(x))
r x=T+2 r x=T+2
o
+ Dr z (x-W)P(x)) . (2)
x=W+1
Hence
T T
L(T+1/W) - L(T/W) = Hr Z P(x) - aH Z P(x) + oH (W-T-1,P(T+1)
x=0 r x=0 r
1]
+ II(-C x§T+1P(x) - aHr(W-T—l)P(T+l))
1] W
+ (1-M) (-D_ I P(x} - aHr I DM(x) - aHr(w—T-l)P(T+l))
T x=T+1 x=T+1
T W W
=H (1-0) ZP(x)-CI I P(x) - (1-1) (Dr+aHr) z P(x)
r x=0 x=T+1 x=T+1
= Hr(l-a)F(T) - CI(F(W) - F(T)) - (l-H)(Dr+aHr)(F(W)-F(T))
= (H_(1-0) + CII + (1-M) (D +aH ))F(T)
- (Ccn + (1-m (Dr+aHr))F(W), (3)
where T
F(T) = I P(x)
x=0




F(W) = X P(x)
x=0

The optimal value of T is the first value of T such that

(CH+(1—H)(Dr+uHr))F(W)

F(T) >
= Hr(lﬂl) + CII + (l-H)(Dr+aHr) . (4)

Notice that if the amount of stock in the system is infinite and
] { there is no cost of holding this stock at the wholesale level, F(W) =
1 and o =20 in which case the optimal value of T is the first value

for which

F(T) > Cl+ (1-T)D_
H +Cll+ (1-THD_

i.e., the result obtained in [1]. If in addition to &« = 0 and

F(W) =1, Il = 0 so that no additional units can reach the retailer on

time, the optimal value of T is the first value for which

F(T) >

which is the solution to the newsboy problem.

s 3. Model II: Resupply Regardless of Arrival Time

The second decision rule regarding resupply considered in this
paper is that of always resupplying additionally requested units
independent of their arrival time at the retail level. In this case we

assume that while a shipment is always made, it arrives on time at the

retail level only Il percent of the time. -




Under these circumstances,

T T
L(T/W) = H X (T-x)P(x) + aH (W-T) ¥ P(x)
r x=0 r x=0
W W
+C I (x-T)P(x) + aH r (W-x)P(x)
x=T+1 T x=T+1
w oG
+ (1-IDb & (x-T)P(x) + D L (x-W)P(x) . (5)
T x=T+1 T ox=w+l

Comparison of (1) and (5) indicates that the third, fourth, and fifth

terms of the former are omitted and two new terms are added, namely,

W
C x£T+l(x_T)P(x) which is the expected cost of shipping additionally
1)
requested units to the retailer and «H (W-x)P(x) which is the
x=T+1

expected loss associated with keeping the remaining W-x wunics.

If (T+l) units are stocked by the retailer and (W-T-1) units
by the wholesaler, the total expected loss is
T+1 T+1

H Z (T+l1-x) P(x) + oH (W-T-1) % P(x)
T %=0 r x=0

"

L(T+1/W)

W W
C 2z (x-T-1) + oH z (W=x)P(x)
x=T+2 T o T4+2

+

W oo
(1-I) Dr z
x=T+2

+

(x~-T-1) P(x) + D z (x-W) P(x) . (6)
. r x=W+1
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T T
L(T+1/W) - L(T/W) = H % P(x) - wll_ X P(x) + aH (W=T-1)P(T+1)
r r r
x=0 x=0
W W
-C X P(x) - aHr(w-T—l)P(T+1) - (1-Hp z P(x)
x=T+1 T Tex+l

H (1-a)F(T) - (C+(1-IHD ) (F(W) -~ F(T))

(Hr(l—a) + C + (l-H)Dr)F(T) - (C+(1—H)Dr)F(W)

The optimal value of T 1is the first value such that

(C+(1-11)D_)F(W)
F(T) > L
= H_(1-0) + C+H(I-D_

As can be seen by comparing (4) and (8), all other things being
equal, when Il = 1 the optimal value of T 1is the same for both models,
since additionally requested units will always arrive on time and are
always shipped or, alternatively, they are always shipped and always

arrive on time.

4., The Special Case of Insurance Items

In many instances, particularly in military inventory systems,
it is desirable to stock a single unit in the system eventhough it
is not likely to be demanded over a long period of time. Applying

Model I to this situation, i.e., where W =1,

L(T/W) = L(0/1) = \.xHrP(O) + (IC+(1-1) (D + ol )) P(1)

and L(T+1/W) = L(1/1) HrP(O)

so that L(1/1) - L(0/1)

(1-0) HrP(O) - (lIc + (1-I) (Dr+aHr)) P(1) .
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=X
For the Poisson distribution with mean » , P(0) =% and P(l) = *P(0);

thus
L(1/1) - L(0/1) = Q_A[Hr(l~u) =-Adec + Q- (Dr+ aHr))]

When L(1/1) - L(0/1) > 0 , the single unit in the system should
be kept at the wholesale level. Conversely, L(1/1) -~ L(0/1) <0

implies that the unit should be placed at the retail level.

Where the transportation system is reliable in the sens: that
material is delivered in a timely fashion, we can assume in the limiting

case that [l = 1 . For Model I, this yields the result that

, N Hr(l-a)

L{l/1) - L(0/1) <0 if A S

hence material would tend to be stockea at the wholesaler, everything else
constant, when XA is small as is the case for insurance items. The same
result is also obtained for Model II when Il = 1 . It should be noted,
however, that even for small values of A there may be combinations of

O, Hr , and C for which it is more economical to hold an insurance

item at the retail level,

5. A Comparison of the Optimal Retail Stock Level T and
the Total Expected Loss Under the Two Alternative Decision
Rules Regarding Resupply

The models developed in sections 2 and 3 permit a comparison of
the optimal retail stock level T and the corresponding total expected
loss when orders placed with the wholesaler are filled only when it is
certain that the additionally requested units will arrive on time versus
always being filled. To illustrate the differences between the two models,
we compute in Table 1 the optimal value of T for arbitrary values of
each variable, In computing the figures in this table, we again assume
for simplicity that the distribution of demanded units is Poisson with
mean A . To further simplify the table we assume that the hclding cost

-9 -
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' Table 1
Optimal Retail Stock Level T for Selected
‘ Values of the Model Parameters®
!
{ Model I Model II
H_=5 H =50 H =5 H_=50
. r r r T
. =.10 N=.95 T7=.10 0=.95 T=.10 0=.95 T=.10 TI=.95
|
: W=1, A=.05
; D_=5, C=5 0 0 0 0 0 0 0 0
] 3 D_ =5, €=250 0 1 0 0 1 1 0 0
b D_ = 100, C=5 1 0 0 0 1 0 0 0
E D, = 100, C=250 1 1 0 0 1 1 0 0
|
: W =10, A = 1.00
i
i D_ =5, €=5 1 1 0 0 1 1 0 0
: D_ =5, C=250 2 4 1 2 4 4 2 2
D_ = 100, €=5 3 1 1 0 3 1 1 0
D_ = 100, €=250 3 4 1 2 4 4 2 2
W=1, A =10.00
D=5, C=5 1 1 1 1 1 1 1 1
} D, =5, €=250 1 1 1 1 1 1 1 1
D, = 100, C=5 1 1 1 1 1 1 1 1
, ‘ D_ = 100, C=250 1 1 1 1 1 1 1 1
+ r
W =10, A = 10.00
D=5, ¢=5 8 8 6 5 9 8 6 5
D_ =5, =250 10 10 8 10 10 10 10 10
; D_ = 100, C=5 10 9 9 6 10 9 9 6
1
{ D_ = 100, C=250 10 10 9 10 10 10 10 10
i
: W =20, A = 10.00
; D=5, C=> 10 10 7 6 11 10 7 6 |
' D=3, C=250 14 17 9 13 17 17 13 13 ﬁj
D_ = 100, C=5 16 11 11 7 16 11 11 7 {
' D_ = 100, C=250 16 17 12 13 17 17 14 13 B
a

u=,10 in all examples. A 1s the mean of a Poisson distribution o demands.
The definition of each of the other variables is given in the text.

- 10 -




for the wholesaler is substantially less than for the retailer as indicated
by our choice of & , i.e., @ = 10 . Four classes of items are considered
having the combination of low (high) shortage cost and low (high) transport
cost. Additionally, we consider cases where the amount of system stock

W 1is less than, equal to, and greater than mean demand X .

Referring to Table 1 it is seen that the optimal value of T 1is

positively related to A , Dr , and W but is inversely related to C
and Hr . Some interaction effects should also be noted. For example,

for Model I

(a) a low shortage cost item which is costly to ship and
would rarely arrive on time is stocked at the whole-
sale level (see Row 2, Col. 1);

(b) a low shortage cost item which is costly to ship and
would almost always arrive on time (were it kept by
the wholesaler) may be stocked at the retail level
(see Row 2, Col. 2) since almost always shipping the
item increases the total expected loss;

(c) a high shortage cost item which is unlikely to arrive
on time may be kept at the retail level when the
shipping cost is low as well as when it is high (see
Rows 3 and 4, Col. 1, respectively) because absence
of the item can result in loss of customers.

(d) However; if the high shortage cost item in (c) will
almost always arrive on time, some additional units
can be kept at the wholesaler, the number of addi-
tional units stocked there being larger, the lower
the transport cost (compare Row 2, Cols, 1 and 2
with Row 3, Cols. 1 and 2).

Perhaps the most interesting feature of Table 1 relates not to
the behavior of Model I or Model I1 considered by itself, but to the

fact that with few exceptions the optimal retail stock levels are

2From (a) and (b) it is seen that the optimal value of T may
increase as il increases (see pp. 33-34, [1]).
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similar for both over a large range of values.3 In an unconstrained

push system costs are incurred which would be avoided if discretionary
contrcls were utilized. Optimization reduces such costs in push systems
like Model II by prepositioning some stock at the retail level. Yet in
most instances the optimal value of T in Model II is the same or differs
by only one or two units from its more sophisticated counterpart. There
are several reasons for this. First, the optimal value of T depends in

Models I and II, respectively, on the ratio

cll + (1—]1)(1)r + aHr))F(W)

t = (9)
1 Hr(lﬁx) + CIl + (l—H)(Dr + aHr)

and
C + (1-H)Dr)F(W)

2 Hr(l-a) +C+ (1—TI)Dr

(10)

As indicated in Table 2 the values of t1 and t2 are similar for most

parameter values. Second, since P(x) is a discrete function the same

optimal T may be obtained even where tl and tz are different.

Additionally where W is small, at most only a small number of units can

be stocked at the tender.

That the two models yield similar results despite the very
different decision rules underlying each can also be ascertained from
Table 3 where the total expected loss is shown corresponding to the
optimal value of T in Table 1. In particular it is noticed that the
total expected loss is the same for both models when T =W . 1In this

case substituting T for W in (1) and (5) yields

w o<}
1LAT=W/W) = Hr I (Wx)P(x) + Dr X (x-W)P(x) .
x=0 x=WH1

3 While not shown, this was also found to be true of values of
% other than .10 .

- 12 -
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Values of ta for Selected Values of the Model Parametersb

Model 1 Model 11
Hr=5 Hr=50 Hr=5 Hr=50
II=.10 l=.95 =.10 [I=.95 N=.10 1=.95 =.10 [1=.95

W=1, A = .05
Dr = 5, C=5 0.5471 0.5269 0.1741 0.1044 0.6778 0.5378 0.1741 0..044
Dr = 5, C=250 0.8683 0.9802 0.4299 0.8400 0.9814 0.98.1 0.8487 0.8466
Dr = 100, C=5 0.9517 0.6839 0.6778 0.1816 0.9536 0.6888 0.6778 0.1816
Dr = 100, C=250 0.9613 0.9806 7.7256 0.8426 0.9857 0.98.5 0.8820 0.8490

W=10, A = 1,00
Dr =5, C=5 0.5477 0.5276 0.1743 0.1045 0.6786 0.5385 0.1743 0.1045
Dr = 5, C=250 0.8694 0.9814 0.4304 0.8410 0.9826 0.9823 0.8498 0.8476
b = 100, C=5 0.9529 0.6848 0.6786 0.1818 0.9548 0.6897 0.6786 0.1818
D_ = 100, C=250 0.9625 0.9818 0.7264 0.8436 0.9869 0.9827 0.8831 0.8500

W=1, A =10.00

Dr =5, C=5 0.0003 0.0003 0.0009 0.0005 0.0003 0.0003 0.0009 0.0005
Dr = 5, C=250 0.0004 0.0005 0.0002 0.0004 0.0005 0.00G5 0.0004 0.0004
Dr = 100, C=5 0.0005 0.0003 0.0003 0.0009 0.0005 0.0003 0.0003 0.0009
Dr = 100, C=250 0.0005 0.0005 0.0004 0.00046 0.0005 0.00G5 0.000% 0.0004
W= 10, A = 10.00
Dr =5, C=5 0.3194 0.3076 0.1016 0.0609 0.3956 0.3129 0.1016 0.0609 ‘
i Dr = 5, =250 0.5069 0.5722 0.2509 0.4903 0.5729 0.57Z7 0.4954 0.4942 E
i b = 100, C=5 0.5556 0.3992 0,3956 0.1060 0.5567 0.4021 0.3956 0.1060 i
. Dr = 100, C=250 0.5612 0.5724 0.4235 0.4919 0.5754 0.5729 0.5149 0.4956 I
W =20, A = 10.00
| Dr =5, C=5 0.5469 0.5267 0.1740 0.1043 0.6775 0.5376 0.1740 0.1043
f Dr = 5, =250 0.8680 0.9799 0.4297 0.8397 0.9811 0.98C8 0.8484 0.8462
f Dr = 100, C=5 0.9513 0.6837 0.6775 0.1815 0.9533 0.6886 0.6775 0.1815
|
" D = 100, C=250 0.9610 0.9802 0.7253 0.8423 0.9854 0.9811 0.8817 0.8486
j
8For Model I, t is given by Equation (9); for Model II, it is given by Equation (10).
. . b

See footnote a, Table 1.
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. Table 3 22
The Total Expected Loss for Selected Values of the

a
Model Parameters

Model 1 Model 11
H =5 H =50 H =5 H =50
r T X r
I=.95 =,10 M=.95 NM=.10 NM=.95 I=.10 n=.95

II=.10

Dr =5, C=5 0.74 0.72 5.21 5.01

Dr = 5, C=250 1.91 4,76 6.38 16.09 4.76 4.75 16.88 16.67 4v
b_= 100, C=5 4.88 1.06 9.40 5.35 4,88 1.07 9.40 5.35

D

100, C=250 4.88 4,88 10.57 16.43 4,88 4.83 21.06 17.02

A =1.00

Dr =5, C=5 8.16 8.00 50.00 45.75 9.65 8.09 45.95 45,53
Dr = 5, =250 12.57 19.04 74,06 119.32 19.11 19:10 121.03 120.59
Dr = 100, C=5 15.72 9.75 96.50 46.23 15.82 9.83 96.50 46.00
D = 100, C-250 16.30 19.06 105.52 119.81 19.48 19.12 129.89 121.08 |

W=1, A =10

3 Dr =5, €=5 34.46 34.46 34.46 34.46 34.46 34.45 34.46  34.46
D = 5, €=250 34.46 34.46 34.46 34.46 34.46 34,45 34.46  34.46
D = 100, C=>5 689.22 689.22 689.22 689.22 689.22 689.22 689.22 689.22 i
D_ = 100, C-250 689.22 689.22 689.22 689.22 689.22 689.22 689.22 689.22 i

W= 10, A = 10.00

VN Dr =5, C=5 11.00 10.84 29.05 23.40 11.64 10.92 29.30  23.40
Dr = 5, €=250 12.51 12.51 45.99 68.81 12.51 12.51 68.81 68.81
Dr = 100, C=5 131.37 130.53 178.95 148,75 131.37 130.55 178.95 148.77
D 100, C-250 131.37 131.37 182.01 187.67 131.37 131.37 187.67 187.67

. W= 20, A = 10.00

i D_ =5, C=5 17.36 16.84  92.21  76.42  21.03  17.12  95.14 76.42

! D_ =5, C=250 29.09 39.24 139.49 272.99  39.43  39.33 278.08 276.77
D_ = 100, C=5 36.67 21.52 210.45  96.88  36.86  21.70 210.45 97.04
D_ = 100, C=250 37.79 39.56 257.41 274.72  40.65  39.70 298.07 278.50

! - 3 gee footnote a, Table 1.
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Thus when retailer and system stock are synonymous, the total expected

loss is the same as would be calculated in the newsboy problem and is
independent of I , C , and « . Comparing the total expected losses
for each model, everything else constant, it is found that, as before,

the two models yield similar results in most instances.

Based on the findings of this section, we conclude that Models I
and II yield substantially the same outcomes and unless the marginal cost
of obtaining information for the former is trivial, the push system
embodied in the latter is preferable. This may account, in part,for the

prevalence of such systems.

6. Summary

The two models presented in this paper provide a simple algorithm
for determining the optimal quantity of an item to be stocked at the
retail level given such factors as the item's shortage cost, holding costs
at the retail and wholesale levels, the cost of shipping material, the
probability of stock being received on time for issue to customers, and f
the amount of stock in the supply system. Thus the context of these models
is much broader than that of the newsboy problem in which only the shortage

cost and retailer's holding cost are considered.

Besides providing a vehicle for computing the optimal re:tail stock
level when system stock is given, the models provide a basis for deciding
whether to ship units in short supply to a retailer using a discretionary
control, namely, whether the units will arrive on time, or to always
ship units even though they may arrive late. While the inventory system
modeled consists of only one retailer and one wholesaler, it nevertheless
affords a means of analytically evaluating an aspect of inventory policy
which otherwise could only be addressed using more complex teghniques.
For the very elementary inventory system examined in this paper it
appears, based on the parameter values we used, that a push sys:tem

is more economical than one utilizing the discretionary control of shipping

shortfall units only if they will arrive on time at the retailer.




It should be recognized that in our calculation of the op:imal
stock quantity T at the retail level, it is assumed that W units
of stock are available in the inventory system. The problem we address
is how to distribute these W units between the two echelons of supply.

The more complex case of how to optimally determine W and T is not

examined. One way of treating this latter problem is to determine a
*
maximum value of W , say W , such that the probability of demand

*
exceeding W is arbitrarily small, and then to choose that combination

TR TS TR Ty TR TR T

of T and W (0§W§W*) for which the total expected loss is a minimum.
Other approaches may also be possible but «:i. -«~yond the scope of this
paper. Still another problem left for fuvt..; r-:search is the extension
of the models to a more complex inverkrsj -»:"»m containing more than

one retailer.
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